

Introduction

Intelligent Concrete for Structural Monitoring — A Ready Technology for the Global Market

A Global-Scale Problem

- 40% of all major construction projects require repairs earlier than expected.
- Main reason: invisible internal damages not detected by traditional methods.
- Monitoring cost: from \$50,000 to \$500,000 per project (sensors, maintenance, diagnostics).
- Examples: Genoa Bridge collapse (Italy, 2018) 43 fatalities, \$500M damage.
 Carolabrücke collapse (Dresden, Germany) damage up to €150M.

Applications in Energy Storage

Solid Electrolytes Based on Graphene

- Using special concrete infused with graphene dispersion, we can create solid electrolytes with high conductivity.
- These systems resist thermal degradation, emit no toxic gases, and are easily adaptable to the shape of structures.
- An excellent solution for stationary energy storage and architectural integration.

Our Solution

We made the concrete itself the sensor:

• Reinforcing fibers (glass or basalt) coated with a conductive graphene layer resistant to alkaline environments.

• These fibers form a 3D conductive network throughout the structure.

• Simple electrodes are embedded into the concrete signals are captured by an external device or loT controller.

• No separate sensors .. no weak points.

Test Results

- Resistance without defects: 10-20 kO, stable (unaffected by moisture or drying).
 Crack 0.5-1 mm - resistance ↑ 2x.
- Crack >1 mm resistance ↑ 3-5x.
- Complete structural failure → active resistance becomes negative (emergency signal).
- Results confirmed on multiple samples (slabs 20×20x5 cm).

www.2d-innovation.de info@2d-innovation.de

Economic Impact

- Reduction of monitoring costs by up to 10x.. → no separate sensors or maintenance required.
- Mass production of low-cost construction material → increase in concrete cost less than 10%.
- Market potential: over \$15 billion annually (source: Verified Market Reports).
- Additional value: smart concrete raises infrastructure value and reduces insurance risks.

Key Advantages of the Technology

• Fully integrated monitoring, no external devices needed.

• Reliable under all conditions: wet, dry, or aged concrete.

• High precision: detection of microcracks as small as +0.05 mm.

• Simple to use: measurements can be taken with a standard multimeter within seconds.

 Scalable for use in bridges, tunnels, high-rise buildings, and dams.

• Environmentally friendly: safe and durable composition.

Patent Protection

- Utility model registered in Germany (2025).
- Ready for registration in China, UAE, EU, and USA.
- Option for joint local registration with investors for accelerated deployment.

Potential Markets and Partners

- Construction corporations (bridges, metro systems, skyscrapers).
- Government projects → enhancing the safety of critical infrastructure.
- Insurance companies → minimizing the risk of catastrophic failures.
- IoT companies --- integration into advanced monitoring platforms.

What We Are Looking For

Partners for pilot projects in the Arab world, China, and the EU.
 Investors to scale up production and secure global market entry.

• Co-development of loT platforms and turnkey smart monitoring solutions.

Final Call to Action

We have made concrete smart.

We are ready to build the infrastructure of the future together with you.

